skip to main content


Search for: All records

Creators/Authors contains: "Willis, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report discoveries of 165 new quasar Ca ii absorbers from the Sloan Digital Sky Survey (SDSS) Data Releases 7 and 12. Our ca ii rest-frame equivalent width distribution supports the weak and strong subpopulations, split at ${W}^{\lambda 3934}_{0}=0.7$ Å. Comparison of both populations’ dust depletion shows clear consistency for weak absorber association with halo-type gas in the Milky Way (MW), while strong absorbers have environments consistent with halo and disc-type gas. We probed our high-redshift Ca ii absorbers for 2175 Å dust bumps, discovering 12 2175 Å dust absorbers (2DAs). This clearly shows that some Ca ii absorbers follow the Large Magellanic Cloud (LMC) extinction law rather than the Small Magellanic Cloud extinction law. About 33 per cent of our strong Ca ii absorbers exhibit the 2175 Å dust bump, while only 6 per cent of weak Ca ii absorbers show this bump. 2DA detection further supports the theory that strong Ca ii absorbers are associated with disc components and are dustier than the weak population. Comparing average Ca ii absorber dust depletion patterns to that of Damped Ly α absorbers (DLAs), Mg ii absorbers, and 2DAs shows that Ca ii absorbers generally have environments with more dust than DLAs and Mg ii absorbers, but less dust than 2DAs. Comparing 2175 Å dust bump strengths from different samples and also the MW and LMC, the bump strength appears to grow stronger as the redshift decreases, indicating dust growth and the global chemical enrichment of galaxies in the Universe over time.

     
    more » « less
  2. ABSTRACT

    Quasar absorption line analysis is critical for studying gas and dust components and their physical and chemical properties as well as the evolution and formation of galaxies in the early universe. Calcium II (Ca ii) absorbers, which are one of the dustiest absorbers and are located at lower redshifts than most other absorbers, are especially valuable when studying physical processes and conditions in recent galaxies. However, the number of known quasar Ca ii absorbers is relatively low due to the difficulty of detecting them with traditional methods. In this work, we developed an accurate and quick approach to search for Ca ii absorption lines using deep learning. In our deep learning model, a convolutional neural network, tuned using simulated data, is used for the classification task. The simulated training data are generated by inserting artificial Ca ii absorption lines into original quasar spectra from the Sloan Digital Sky Survey (SDSS), while an existing Ca ii catalogue is adopted as the test set. The resulting model achieves an accuracy of 96 per cent on the real data in the test set. Our solution runs thousands of times faster than traditional methods, taking a fraction of a second to analyse thousands of quasars, while traditional methods may take days to weeks. The trained neural network is applied to quasar spectra from SDSS’s DR7 and DR12 and discovered 399 new quasar Ca ii absorbers. In addition, we confirmed 409 known quasar Ca ii absorbers identified previously by other research groups through traditional methods.

     
    more » « less
  3. ABSTRACT

    Although many near-Earth objects have been found by ground-based telescopes, some fast-moving ones, especially those near detection limits, have been missed by observatories. We developed a convolutional neural network for detecting faint fast-moving near-Earth objects. It was trained with artificial streaks generated from simulations and was able to find these asteroid streaks with an accuracy of 98.7 per cent and a false positive rate of 0.02 per cent on simulated data. This program was used to search image data from the Zwicky Transient Facility (ZTF) in four nights in 2019, and it identified six previously undiscovered asteroids. The visual magnitudes of our detections range from ∼19.0 to 20.3 and motion rates range from ∼6.8 to 24 deg d−1, which is very faint compared to other ZTF detections moving at similar motion rates. Our asteroids are also ∼1–51 m diameter in size and ∼5–60 lunar distances away at close approach, assuming their albedo values follow the albedo distribution function of known asteroids. The use of a purely simulated data set to train our model enables the program to gain sensitivity in detecting faint and fast-moving objects while still being able to recover nearly all discoveries made by previously designed neural networks which used real detections to train neural networks. Our approach can be adopted by any observatory for detecting fast-moving asteroid streaks.

     
    more » « less